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A method is described for solving certain dual pairs of constrained approxima­
tion problems.

1

In what follows we describe a subgradient method for certain discrete,
linear, constrained approximation problems. The method is based on duality
results which we include here for the sake of completeness. The geometric
idea underlying the method is the same as the one described in [I] for the
case of linear programming problems. There is, therefore, a certain overlap
between these two articles. We found it, however, worthwhile to treat the
approximation problem (and the corresponding duality theory) in its own
right. We should note perhaps that Krabs [2] has advocated a so-called
pseudogradient method for solving problems of Chebyshev-approximation.
The additional conditions required by his method to ensure convergence
seem, however, difficult to ascertain a priori. The method we propose
always converges, provided the problems under consideration have optimal
solutions at all (not necessarily unique ones).

2

Suppose we are given three systems of functions {/;(t)}, {g;(t)}, {h;(t)}

(j = 0, I, ... , m), all defined on a finite point set {t1 , ... , tic}' Consider the
problem of finding a linear combination :L~' x;/; whose distance to 10 is

* Part of this work was performed while the author was at the University of Bonn and
at the IBM Zurich Research Laboratory.
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minimum, while the distance of the corresponding linear combination
L~ Xjgj to go is below a certain threshold, and the values of L~' xjhj are
above the corresponding values of ho . If we identify the values}j(tl) with the
k-vector jf' and if we measure the distance from fo and go by means of
norms 7T and p in ~"', then the above problem is the problem of

minimizing
m

7T V~ -- L xjfj) ,
1 '

subject to

In

ho - L xjh j O.
1

Introducing additional variables and noting that a given equality can
always be expressed by two inequalities and that an arbitrary variable can be
represented as the difference of two nonnegative variables, we see that
the above problem is a special case of the following problem P.

P: min{F(x, y) I (x, y) E'S},

where F(x, y) = 7T(Cx -+- Dy -;-. 13) -;- a1 x ",.. bT,r and S IS given by the
conditions

Ax ~.. By + 0"

x O. p( y)

0,

I.

Here x, yare vectors of real-valued variables; A, B, C, D denote matrices of
appropriate size, 7T and p are given norms in the appropriate spaces.

We say that (x, y) is[easible for P, if (x, y) E'S, strictly feasible, if (x, y) E'S
and p(y) < I.

In analogy with the duality theory for linear programs [3,4] we may
formulate for the given primal minimization problem P a dual maximization
problem D,

D: max{G(~, 11) (f 11) E. 2,'J,

where G(~, 'I)) cc '-p*(-BT~ ~. DT'I) .- b) CXl~ -1 f3T'I) and 1: is given by
the conditions

Al~ -i, CT'I) .+- a 0,

~ 0, 7T*('I) 1.

Here T denotes transposition, and * denotes the conjugate norm,

7T*('I) cc SUp{'I)TZ I 7T(Z) ~ I}.
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(We shall not need the symmetry of the norms 1T and p. Note that 1T** == 1T.)
We see that D has exactly the same structure as P, i.e., the pair P, D is
symmetric. P and D are linked by the following theorem.

DUALITY AND EXISTENCE THEOREM. If both problems P and D have strictly
feasible points, or one has strictly feasible points and no linear part in the
objective fill1ction, then both have optimal solutions, and a necessary and
sufficient condition for optimal solutions is that

(x, y) E S. F(x, Y) G(f Y)). (1)

For the sake of completeness, and since we are not able to give a precise
reference, we supply a proof, based on a theorem of A. Ghouila-Houri,
in the appendix.

3

We suppose that the conditions of the above theorem are satisfied, so that P
and D have optimal solutions, and these can be found by solving the
system (I). By combining all variables into z = (x, y, ~, Y)) E [R;1J1 we may
write (I) in compact form as

jj(z) ° (j L..., N), (2)

where the functions/;· are convex. We denote by Z the nonempty solution set
of (2). Let pO be a monotonic norm in [R;'¥, and

(p(z) = PUI '(z), ... ,fy+(z), f/,(z) = max{O,t;(z)].

Then cp is easily seen to be a convex function [1], and Z may equally well be
described as the set of points giving cp(z) the value zero, which, incidentally,
is the minimal value of cp(z) over [R;/Il. Our original problem of solving P and D
thus has been transformed into the problem of minimizing the convex
function cp(z) over [R;1J1. cp is not differentiable everywhere; therefore ordinary
gradient methods for minimizing cp may fail. However, cp, being a convex
function, has in each point z at least one subgradient. This is a vector t such
that the support inequality

(~ - z)T t < cpm - cp(z)

is valid for all t E [R;1J1. The set of all subgradients in z is denoted by 3cp(Z)1.

1 If l' is differentiable, the subgradient is unique and equals the gradient. Subgradients
of <p may be calculated, if the subgradients of jj and p are available. On bounded subsets
of [R;'", the subgradients of <p are also bounded [1]. Note that 0 ct e<p(z) if z l' z.
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We may then use a subgradient method for minimizing f/). The fact that the
minimal value of ([J, zero, is known a priori will enable us to give an explicit
prescription for the step-length.

4

For finding an element of Z the following subgradient method may be
used: Starting with an arbitrary point ZH E !Hili we define for z' Z.

(/(z')A . --- t
J i tl' ,:! )"

\'L (II'

H

A, E (0, 2), (3)

where Uv ,\(2 --- A,,). We assume that ZV l' Z for all v. Then z' converges to
an element Z E Z.

Proof of convergence. First we note that

'( ,)
, z"- z ,~- (Jv2~~- Vz Z,

v I

(4)

with ] . : denoting Euclidian distance. This follows by squaring out the
left-hand side, after substitution for zV' 1 from (3), and by using the support
inequality, which, because of q;(z) 0, reads

(z --- z'y tv --(p(ZV). (5)

Equation (4) implies that all iterates z' are bounded. Consequently

for all v. (6)

If we had q;(zv) cy °for all I', then from (4) and (6) by summing up we
would have for all K,

a contradiction, since the left-hand side tends to +- 00, whereas the right-hand
side is bounded by ] ZO - Z ]2. Therefore there exists a subsequence ZV such
that ([J(zv) ->- 0, and even zP ->- Z (because of boundedness). It follows that
([J(z) = 0, whence Z E Z. But then it follows from (4) that I ZV - z I is
monotonically decreasing for the whole sequence. Therefore the whole
sequence convergences to Z. Q.E.D.
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The recursion (3) in itself is by no means new. For m = I (the one­
dimensional case) it reduces to a Newton-step for finding a root of 'p(z) = o.
An early example of its use for general m can be found in [5] (for systems
of equations), a more recent one in [6].

5

We make now the additional assumption that the norms 7T and p have the
property of being the maximum of a finite family of linear forms. Then 7T*

and p* have the same property, too, and this implies that all the functions jj
appearing in (2) have the property of being the maximum of a finite family
of linear functions; thus

fi(Z) = max I;(z),
lEH j

(7)

with Ii linear, H j finite. We also make the additional assumption that Z is
a singleton,

Z = {z}.

Under these two additional assumptions we have

<p(z)
I z - z I

m >0 for all k (8)

Proof of (8). z is then the unique solution of the system

(9)

which under (7) is equivalent to (2). Let Hi = {i E Hi ! I;(z) = a}. Then z is
still the unique solution of (9), if we replace Ui H j by Ui Ifi . Define

fi(Z) == max I;(z)(= 0, if Iii empty),
. JED} .

.p(z) == p[{A(z)=, ... , (/N(Z»'].

Then

.p(z) > 0 for z * z (otherwise z would solve (9»,

.p(z) 'S; <p(z) for all z (because of the monotonicity ofp),

(7{& + At) = A.p(z + t) VA ); 0 (homogeneity about z).

Thus for all z =ft Z

<p(z)

I z -- z i
Q.E.D.
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o.mt,

From (8) we draw two important numerical conclusions: (a) From (5)
follows !f(zv) I z" -- z I . i t" I, and by (8)

(p(zv)
---~-_.-

Thus the denominator appearing in (3) is bounded away from zero. and the
method is stable. (b) From (4), (6) and (8) follows

! Z"cl - z I

a"m:!
2/\[2 .

Thus the method converges at a linear rate, if a" is chosen to be constant.

ApPENDIX

In order to prove the duality and existence theorem we write

P: min F •...~ 77(Z) -+ aTx + bTy
subject to

Ax -:- By -:- ." .;; 0

-z -+ Cx -+ Dy (3= 0

x 0, p(y) Z': I

D: max G .•= ~p*(-0 -:- C'(T~ 1- (3TYj
subject to

--, + BTg +- DTYj + b =.= 0

g O. 77*(Yj) ,;:;; I.

(a) We note first that F G for any feasible points of P and D. Indeed,
using in turn the norm constraints, the equality constraints, and the linear
inequality constraints, we obtain

F(x, y, z) - G(t, Yj. 0 = 77(Z) + aTx + bTy + p*(-0 -- c'/Tg - W..,.,
..,.,TZ + aTx+- Vv - yT' - ,y,Tg - (3TYj

= -e(Ax + By + y.) + xT(ATf + CTYj + a)

> O.

(b) Let now P and D have strictly feasible points. Then, in view of (a),
the infimum of F over all feasible points of P, call it P, is finite. Since P has
strictly feasible points, but has no feasible points with F(x, y, z) < P, a
sharpened version of the Farkas-Minkowski lemma, first proved by
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A. Ghouila~Houri [7, p. 66]", gives the existence of "multipliers" t 0,
y), fL 0, ,\ 0 such that

P 77(Z) + aTx + Vv + e(Ax +- By + C\') + Y)T( -z -:- Cx -+ D.v + (3)

Vx, Vy, Vz.

Introducing' = BTt + DTY) T b this gives

P [xT(ATt + CTY) + a -- fL)] + [77(Z) -- ZTY)] -:' [Ap(y) -~ yT']

.~ A+ cxTt T WY), VX, Vy, Vz.
(10)

Since the bracketted expressions [...J appearing in (10) are positively
homogeneous of order 1, inequality (10) can hold for all values of x" y, Z only
if the brackets are nonnegative for all values of x, y, z. The nonnegativity
of the three brackets furnishes in turn

(i.e., ATt + CTY) + a

p*(-O :S.; A.

0)"

Thus (t, y), ,) is feasible for D. Inserting the last inequality in (10) and setting
x = y == z = 0 we obtain from (10)

P:S.; -p*(-,) + cxTt + WY) = G(t, y), O·

In view of (a), (t, y), 0 is then optimal for D, and P = G(g,y], O. An
analogous reasoning, starting from D with G = G(t, Y), s) and using the fact
that 77** = 77, p** = p, shows that P has an optimal solution (x, y, z) with
F(x, y, z) = 6. Thus P and D have optimal solutions with F == G, and (I)
is seen to be a necessary optimality condition. Its sufficiency is obvious from
(a).

(c) Suppose now, that P has strictly feasible points and no linear part in
the objective function. Then P requires the minimization of 77(Z) subject to

(11)

• "Theoreme de Farkas-Minkowski. - Soient f(x), gb.-), g.(x), ... , gm(x) des fonctions
coneaves definies dans ~n, et soit un indice q < m tel que les fonctions g,(x) (q < i < m)
soient lineaires affines. Si Ie systeme gi(X) ;;:, 0 (i = 1,2,... , m), (x) > 0 n' admet pas de
solution x E ~n, et si Ie systeme gi(X) > 0 (1 < i < q), g,(x) ;;:, 0 (q < i < m) admet une
solution, alors il existe des nombres Y, , Y. ,... , Ym ;;:, 0 non tous nuls tels que f(x) +
L;' Yigi(X) < 0 pour tout x E ~n."
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where,

W. OETTU

L : y p( l') I:, k

I A / ..,
\ CO'

<l>] . K, being a linear transform of a polyhedral cone, is closed. </>2 . L, being
a linear transform of a compact set, is compact. The right-hand side of (I 1),
being the sum of two compact sets and a closed set, is closed. The set of
feasible z is the inverse image of this closed set under </>0' thus is again closed.
On the nonempty closed set of feasible z the norm 77(Z) assumes a minimum.
Therefore P has an optimal solution (x, .1', z). The same reasoning as under (b)
with P F(x, .1', z) shows that D has an optimal solution (f, 1},~) with
G(f, Yj. 0 F(x, l'. Z).
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